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Abstract 

Renin Angiotensin system (RAS) regulates multiple physiological, pharmacological and 
pathological functions throughout the body by interacting with angioteinsinII (AngII) receptor 
type 1 (AT1R) and Ang II receptor type 2 (AT2R).  
 
However, Ang II is being responsible for damaging several organs like kidney, heart, adrenal 
cortex, smooth muscles, brain, pancreas, endothelial function and liver. Ang II-induced AT1R 
activation via Gq/11 stimulates phospholipases A2, C, and D, and activates inositol 
trisphosphate/Ca2 signaling, protein kinase C isoforms, and MAPKs, as well as several tyrosine 
kinases (Pyk2, Src, Tyk2, FAK), scaffold proteins (G protein-coupled receptor kinase-interacting 
protein 1, p130Cas, paxillin, vinculin), receptor tyrosine kinases, and the nuclear factor-kB 
pathway.  
 
The AT1R also signals via Gi/o and G11/12 and stimulates G protein-independent signaling 
pathways, such as-arrestin-mediated MAPK activation and the Jak/STAT. Many of the 
deleterious actions of AT1R activation are initiated by locally generated, rather than circulating, 
Ang II and are concomitant with the harmful effects of aldosterone in the cardiovascular 
system.  
 
AT1R-mediated overproduction of reactive oxygen species has potent growth promoting, 
proinflammatory, and profibrotic actions by exerting positive feedback effects that amplify its 
signaling in cardiovascular cells, leukocytes, and monocytes. 
 
In contrast, mitogen activated protein kinase (MAPK) signal transduction pathways are 
normally observed everywhere and extremely regulated process for a eukaryotic cell cycle. Like 
Ang II, MAPK also contributes several physiological and pathological functions once it is 
activated. Moreover, MAPK cascade is also considered as a key signaling pathway that strictly 
controls various stimulated cellular processes, including proliferation, differentiation, 
inflammation, fibrosis and apoptosis.  
 
Studies demonstrated that how Ang II is responsible for MAPK activation and its further 
consequences in cytoplasm and nucleus for regulation of several inflammatory and pro-
inflammatory cytokines.  
 
In this article, I discuss Angiotensin-(1–12), Ang-(1–7) Metabolism, Angiotensin II and MAPK, 
Ang II and MAPK in hepatic free radicals generation, Ang II and MAPK in diabetic, Ang II and 
MAKP in hepatic inflammation, Angiotensin II as a New Potential Therapeutic Target, 
Angiotensin II and the Renin-angiotensin System 
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1. Introduction  
 

Angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 (AT1) receptor 
antagonists (ARBs) are widely prescribed antihypertensive agents (1),(2). Contemporary 
guidelines recommend these drug classes for patients with uncomplicated hypertension, heart 
failure, previous myocardial infarction, chronic kidney disease, or diabetes (3),(4). However, the 
results of a recent metaanalysis suggest, largely on the basis of indirect comparisons, that ARBs 
and ACE inhibitors may not be equivalent in terms of their ability to reduce cardiovascular 
morbidity and cardiovascular mortality and total mortality (5),(6),(7),(8). Pooled analyses of 
placebo-controlled and active comparator randomized controlled trials of ACE inhibitors have 
demonstrated reductions in overall mortality, cardiovascular mortality, and myocardial 
infarction (5),(6). In contrast, meta-analyses of ARB trials indicate reductions in the risk of stroke 
but an unchanged or potentially increased risk for myocardial infarction (5),(8),(9). It has been 
suggested that differences in the pharmacology of ACE inhibitors and ARBs may explain these 
differences in risk reduction. (6),(10). Contrasting with this body of evidence are the results of 
the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial 
(ONTARGET) randomized controlled trial, which enrolled patients at high cardiovascular risk 
and included a comparison between 8576 patients treated with ramipril and 8542 patients 
treated with telmisartan.11 This trial reported no difference in terms of the incidence of the 
primary composite endpoint of cardiovascular death, myocardial infarction, stroke, and heart 
failure hospitalization between ramipril (16.5%) and telmisartan (16.7%; hazard ratio [HR], 1.01; 
95% confidence interval [CI], 0.94–1.09) (11).The objective of this retrospective cohort study was 
to further explore these discrepant findings in a large clinical registry of patients with diabetes. 
We focused on patients with diabetes because they constitute a group at high risk for morbidity 
and mortality. Specifically, we compared mortality and hospitalization outcomes between 
incident ACE inhibitor users and ARB users in this patient population. In this article I discuss 
the recognition of Ang II’s pathogenic actions is leading to novel clinical applications of 
angiotensin-converting enzyme inhibitors and AT1R antagonists, in addition to their 
established therapeutic actions in essential hypertension, diabetics, hepatic free radicals 
generation, Cancer and Autoimmunity. 

 
2. Sources of Angiotensin-(1–7) 

 2.1. Endo-peptidases   

Angiotensinogen, aglycosylated protein that is primarily synthesized and secreted by the liver 

as well as other tissues is the sole precursor for angiotensin peptides (12). The only known 

substrate for the as partyl protease renin is angiotensinogen which is releases the decapeptide 

Ang I from the amino-terminal portion of the protein. AngI is then cleaved by ACE to form the 

bioac- tive peptide AngII. Early studies revealed that endogenous levels of both AngI and Ang-
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(1–7)were markedly increased following the administration of ACE inhibitors (13),(14). The 

augmented response in Ang-(1–7) suggested that the circulating peptide may contribute to the 

beneficial actions of the inhibition of ACE pathway in addition to that of reducing endogenous 

levels of AngII. The increase in Ang-(1–7)in the presence of ACE blockadeneces- sitatesa 

processing pathway in dependent of the formation of Ang II. Several studies subsequently 

showed that the endopeptidase 3.4.24.11 (neprilysin) contributed to the circulating levels of 

Ang- (1–7) in animals chronically treated with various ACE inhibitors (15),(16),(17, 18). AngI 

infusion in normotensive WKY and hypertensive spontaneously hypertensive rat (SHR) treated 

with the ACE inhibitor lisinopril resulted in higher plasma levels of Ang-(1–7) and co-

administration of then eprilysin inhibitor SCH39370 but not the prolyloligopeptidase 

(POP)inhibitor z-prolylprolinal abolished the circulating levels of the peptide (19). Moreover, 

acute infusion of a similar dose of AngII did not increase circulating  Ang-(1–7) in either control 

or lisinopril-treated WKY and SHR. The increase in Ang-(1–7) following ACE blockade reflects 

both a reduction in Ang-(1–7) metabolism and alternative processing of AngI through tissue-

specific endopeptidases (15). Inthis regard, Pereira etal. Recently demonstrated that the 

endopeptidase EC3.4.24.15 (thimetoligopeptidase) may contribute to formation of Ang-(1–7) in 

the rat hippocampus (20). Interestingly, these investigators reported higher expression of this 

peptidase and the Masreceptor in a rat model of temporal lobe epilepsy suggesting a possible 

role of the Ang-(1–7)-Masaxis in this central pathology (20). Indeed, the study supports earlier 

reports of the direct processing of AngI to Ang-(1–7) by thimetoligo peptidase in vascular 

smooth muscle cells and arathindlimb perfusion system (21),(22). 

2.2. ACE2  

Apart from endopeptidases that process Ang I or Ang-(1–12) to Ang-(1–7), various mono-

carboxy peptidases including prolyl carboxy peptidase (PCP), POP, and the ACE homolog 

ACE2 generate Ang-(1–7) directly from Ang II. Its hould be emphasized that PCP requires 

anacidic pH optimum for activity, but may contribute tolysosomal pathways for metabolism of 

internalized Ang II or to the processing of AngII to Ang-(1–7) in urine (23). ACE2 continues to 

be of primary focus given its ability to effectively metabolize AngII and generate Ang-(1–7) 

(24),(25). Renin cleaves the precursor protein angiotensinogen to angiotensin-(1–10) (AngI) 

which is further processed to the biologically active peptides Ang-(1–8) (AngII) by angiotensin 

converting enzyme (ACE) and Ang-(1–7) by endopeptidases such as neprilysin (NEP). AngII 

under goes further processing at the carboxyl terminus by the carboxypeptidase ACE2 to yield 

Ang-(1–7)(Ang7).Ang-(1–7)under goes decarboxylation (DC) of the aspartic acidresidue to form 

Ala1-Ang-(1–7)(Ala1-Ang 7).The dodeca peptide  Ang-(1–12)is derived from the hydrolysis of 

the Tyr12-Tyr13 bond of rat angiotensinogen by an unknown enzymatic pathway. AngII 

recognizes both AT1 and AT2 receptors. Ang-(1–7) activates the Mas receptor and Ala1-Ang-(1–

7) recognizes the Mas-D related receptor (Mrg). 100-fold higher than that of PC or POP; in this 

regard, the soluble form of ACE2 has been utilized as a therapeutic agent to reduce blood 

pressure and attenuate target organ damage in hypertensive and diabetic animal models 

(26),(27),(28),(29). ACE2 mRNA expression was increased in the brain medulla following long-
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term AT1-receptor blockade (30). It is unclear whether the beneficial effects of ACE2 

administration reflect the reduction in Ang II, the enhanced for- mation of Ang-(1–7) or the 

increased ratio of Ang-(1–7) toAng II. Moreover, Turner and colleagues report that soluble 

ACE2 attenu- ated the integrin-dependent stimulation of focal adhesion kinase (FAK) and 

increased the expression of the Akt kinase suggest- ing the peptidase may have direct cellular 

effects apart from its peptidase activity (31). In addition to the functional role of ACE2 that 

catalyzes the conversion of Ang II to Ang-(1–7), the peptidase may serve as a biomarker of renal 

and cardiac pathologies. Two studies in type I (streptozotocin-induced) and type II (db/db 

mice) dia- betic models reported an early increase in the urinary excretion of ACE2 (32),(33). 

The enhanced excretion of ACE2 in db/db mice closely correlated to the increase in 

albuminuria or proteinuria. Moreover, chronic treatmentwith insulin-sensitizing agent rosigli- 

tazone improved the metabolic balance in the db/db mice and reduced the excretion of both 

ACE2 and albumin (32). In con- trast to the reduction in urinary levels of ACE2, the increased 

renal expression of ACE2 in the db/db mouse was not altered by rosiglitazone which may 

reflect an added therapeutic benefit to maintain the peptidase in the diabetic kidney (32). An 

important aspect of the two latter studies suggests that in the diabetic kid- ney, the 

development of tissue injury should not necessarily be interpreted as arising from a deficit in 

ACE2 expression. Indeed, the increase in tissue and urinary levels of ACE2 in pathologi- cal 

conditions may reflect a compensatory response to alter the balance of Ang II and Ang-(1–7) 

pathways within a particular tissue or cell type (7). In this regard, the deleterious effects of an 

ACE2 inhibitor or knock down of the enzyme may be particularly evident under conditions of 

enhanced ACE2 expression. The circulating levels of ACE2, which are typically low to not 

detectable, are also increased in experimental conditions of diabetes. We show in a model of 

diabetic hypertension that circulating ACE2 activity increased over five fold in female mRen2. 

Lewis rats (34). However, serum ACE activity also increased suggesting that the potential 

beneficial effects of higher ACE2 may be offset by ACE acting to increase AngII and metabolize 

Ang-(1–7).Indeed, plasma levels of Ang-(1–7) were not changed in the diabeticmRen2.Lewis 

despite them arked increase in ACE2 activity. Moreover, circulating ACE activity was 

substantially higher than that of ACE2 when assessed under similar incubation and substrate 

conditions for each enzyme (34). In the db/db mice, in fusion of exogenous ACE2 that markedly 

increased serum levels of the enzyme did not alter urinaryACE2 suggesting that the enzyme is 

not readily filtered by the glomerulus (33). One mechanism for the increase in urinary excretion 

of ACE2 is the regulated shedding of the enzyme from the apical face of the proximal tubules. 

Studies by Lambert and colleagues originally reported that the disintegrin and 

metalloproteinase (ADAM17) secretase was responsible for the release of ACE2 (35). A 

subsequent report identified a specific sequence of the juxta membrane stalk of ACE2 

hydrolyzed that was by ADAM17 to release the peptidase from human pulmonary epithelial 

cells (36). In proximal epithelial cells of the db/db mouse kidney, there was extensive overlap of 

ACE2 and ADAM17 immuno staining (32). Moreover,rosiglitazone treatment at tenuated 

ADAM17 expression which may contribute to the reduced shedding of ACE2 in to the tubular 
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fluid and subsequent excretion in the urine. In addition to the shedding ofACE2, ADAM17 may 

influence tissue damage by the release of the tethered inflammatory factors TNFa, EGF, and 

TGFa that subsequently activate their respective receptors in an autocrine or paracrine 

manner(37). IfexpressionofACE2on the apical membrane of the tubules contributes to the 

regulation of the local concentrations of Ang II,an increase in ADAM17 may lead to 

inflammatory and fibrotic events through enhanced AngII-AT1-receptor signaling, as well as 

increased cytokine and growth factor activation. Lazartigues and colleagues 

reportthatknockdownofADAM17inthebrainofDOCA-salt mice reduced blood pressure, and 

increased the tissue expression of ACE2 (37). In this model of neurogenic hypertension, the ben- 

efitofADAM17knockdownmayreflectareductionofAngII in brain ;however, the direct effects on 

the release of EGF and other cytokines cannot  .Indeed, the transactivation of the EGF receptor 

(EGFR) and signaling pathways is a key signaling event of the AngII-AT1-receptorpathway(38). 

Theincreased sheddingofACE2mayalsoreducelevelsofAng-(1–7) and attenuate the inhibitory 

actions on the AngII-AT1-receptor axis and other pro-inflammatory and profibrotic pathways. 

Akhtar et al. Recently reported that Ang-(1–7) attenuated EGFR activation in response to Ang II, 

as well as reduced the extent of renalinjury in the diabetic SHR (39). Moreover, increasing 

evidence suggests that one of the primary pathways activated by Ang-(1–7) is the stimulation of 

various cellular phosphatases (PTP) including SHP-1 and DUSP-1 that may attenuate activated 

kinase-dependent pathways (40),(41),(42),  (43),(44).  

3. Angiotensin-(1–12)  

 Nagata and colleagues identified a novel endogenous angiotensin peptide termed Ang-(1–12) 

that contains the first 12 amino acids of the N-terminal sequence of rat angiotensinogen(Asp1-

Arg2- Val3-Tyr4-Ile5-His6-Pro7-Phe8-His9-Leu10-Leu11-Tyr12)(45). These investigators 

developed antibodies directed to the amino-and carboxyl-terminal sequences of Ang-(1–12) and 

demonstrated expression of Ang-(1–12) in essentially all tissues that contain AngII with the 

highest levels in the intestine, brain, heart, plasma, and kidney of rat. Differential expression of 

Ang- (1–12) was evident in the heart and kidney of the SHR and the normotensive control 

Wistar Kyotostrain (WKY) (55). Ananti- body specific to the C-terminals equence of rat Ang-(1–

12) includ- ing Leu11-Tyr12 revealed selective staining in cardiacmyocytes and proximal tubule 

cells of the kidney.The site of hydrolysis for formation of Ang-(1–12) from rat angiotensinogen 

occurs at residuesTyr12-Tyr13 which is distinct from the Leu10-Leu11 sequence cleaved by 

renin to form AngI. Thus, the generation of Ang-(1–12) is likely through an on-ren independent 

pathway and maybe apparent in condition so flow or suppressed renin activity, particularly 

with the use of selective renin in hibitors. Similar to AngI, Ang-(1–12)can be hydrolyzed at the 

Phe8-His9 bond by ACE or chymaseto form AngII (45),(46),(47). The conversion of Ang-(1–12) 

to Ang II by ACE in the circulation is consistent with the acute increase in blood pressure 

following an infusion of Ang-(1–12) in normotensive rats, as well as the blockade of the pressor 

response by either ran ACE inhibitor or AT1-receptor antagonist. Arnol detal. Also find that 

central Ang-(1–12) administration attenuated baro reflexsen sitivity and the response was 

blocked by either an ACE inhibitor or AT1-receptor antagonist (47). Moreover, neutralization of 
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Ang-(1–12)by intra-cerebro-ventricular (ICV)infusion of anaffinity-purified antibody reduced 

blood pressure in the (mRen27)2 hypertensive rats consistent with the biochemical and 

immunocytochemical evidence for Ang-(1– 12) in the rat brain(48). To our knowledge, the latter 

study by Isa and colleagues is the only report to date that demonstrates an endogenous role for 

Ang-(1–12). As to the Ang-(1–7) axis, we recently demonstrated that Ang- (1–12) may be an 

alternative substrate for the generation Ang- (1–7) in the kidney(49). Isolated cortical 

membranes from the kidney of the hypertensive mRen2.Lewis rat processed Ang-(1– 12) to 

Ang-(1–7) and Ang-(1–4).We observed a similar pattern of metabolism using the recombinant 

forms of mouse and human neprilysin. The selective neprilysin inhibitor SCH39370 abolished 

the formation of Ang-(1–7). We noted a peak corresponding to Ang I in the processing of Ang-

(1–12) by the cortical membranes that was also abolished by the neprilysin inhibitor suggesting 

the peptide may be an intermediate in the processing of Ang-(1–12) to Ang-(1–7)(49). In these 

studies, we also show that circulat- ing or renal renin did not metabolize Ang-(1–12) 

particularly in the presence of the ACE inhibitor lisinopril which implies that the peptide lacks 

the minimal sequence for recognition by renin(49). Bujak-Gizycka and colleagues demonstrated 

the generation of Ang-(1–12) in rat aorta homogenates by a serine peptidase using Ang-(1–14) 

as the substrate; however, the extent that this activity will process the angiotensinogen protein 

to Ang-(1–12) is not currently known(50). We did not detect the conversion of Ang-(1–12) to 

Ang-(1–7) in serum which would be consistent with the lack of soluble forms of neprilysin in 

the circulation, nor were there significant levels of Ang-(1–11) suggesting the absence of 

processing by ACE2 or other carboxypeptidases(49). It is fea- sible that Ang-(1–12) may be a 

potential substrate for Ang-(1–7) through the initial conversion to Ang-(1–11) by ACE2 and 

subse- quent processing to Ang-(1–9) and Ang-(1–7) by ACE. However, ACE activity is far 

higher in the circulation than ACE2 and Ang- (1–7) formation from Ang-(1–12) or Ang I more 

likely reflects endopeptidase activity. Although further studies are required to discern the 

endogenous pathways for the formation and process- ing of Ang-(1–12), the peptide constitutes 

a potential substrate for the conversion to either the active products Ang II or Ang-(1–7). 

4. Ala1-Angiotensin-(1–7) ANDPro1-Glu2-Ang II  

In addition to the precursors to Ang-(1–7),the peptide itself may serve as a precursor 

tootheractive forms. Santosand colleagues recently identified an endogenous analog of Ang-(1–

7) in which the as partic acid residue was decarboxylated to alanine (Ala)formingAla1-Ang-(1–

7)(51). TheAla1-Ang-(1– 7) analog (alsotermedalmandine) may also potentially arise from the 

proteolytic processing of endogenous Ala1-AngII(AngA) byACE2(52). Similar toAng-(1–

7),Ala1-Ang-(1–7)induced the relaxation of isolated aortic vessels and chronic infusion of the 

analog lowered blood pressure. Interestingly, the vascular effects ofAla1-Ang-(1–7) were not 

blocked by the typical receptor antagonist D-Ala7-Ang-(1–7) (A779) against the Masreceptor, 

but were attenuated by D-Pro7-Ang-(1–7) and the AT2 receptor antagonist PD123319.This study 

further showed that Ala7-Ang-(1–7) stimulated the Mas-related receptor (MrgD) and did not 

interact with the Mas receptor. Identification of Ala1-Ang-(1–7) in the human circulation and in 

an isolated heart perfusion system was achieved by aHPLC-Mass spectrometry approach. It is 
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worth noting that the available direct RIA or ELISA assays will not distinguishbetweentheAsp1- 

andAla1- forms of Ang-(1–7) since both is of or mss hare the identical C-terminals equence that 

is typically recognized by the immune reactive antibodies. Thus, an initial separation step such 

as HPLC combined with conventional immune-reactive assays will be required to routinely 

detectand quantify the different forms of Ang-(1–7) in the circulation and tissues.The potential 

importance of these findings may reflect the greater diversity of the Ang-(1–7) axis regarding 

the identification of both a novel ligand and receptor that contributes to vascular tone. 

Moreover, that the AT2 antagonist PD12319 antagonized the actions of Ala1-Ang-(1–7) at the 

MrgD receptor may explain the apparent interaction of Ang-(1–7)withtheAT2 receptor notedin 

several studies (53),(54),(55). Although distinct from either Ang-(1–7) orits Ala analog, Jan kows 

kietal. Identified another endogenous ligand to the AT7/ Mas receptor in human serum termed 

angioprotectin  (56). This peptide resembles the octa peptide AngII but has substitutions of Pro 

and Gluat the first two N-terminal residues to form Pro1-Glu2-AngII. Despite the fact that the 

angio protectin contains both theTyr4 and Phe8 residues considered to be essential to the 

actions of AngII, the peptide lacked any vasoconstrictor activity in isolated a orticrings. 

However, the peptide induced a dose-dependent vaso-relaxation of isolated vessels that was 

absent in vessels from the Mas-knockout mice, as well as acutely reduced blood pressure in the 

SHR. Moreover, Pro1-Glu2-AngII stimulated NO formation in Mas-transfected CHO cells but 

notin the control cells. Finally, the study presented evidence for local formation of Pro1-Glu2-

AngII from AngII in human endothelial cells that was enhanced by addition of exogenous 

proline and glutamicacid suggesting a post transcriptional modification of AngII. It is not 

known to what degree Pro1-Glu2-AngIIis processed by ACE2 or other carboxypeptidases to the 

Ang-(1–7) analog and whether Pro1-Glu2-Ang-(1–7) is functionally active at the either the Mas 

or Mrg D receptors. It is also unclear the extent conventional immune-reactive assays for Ang II 

will detect endogenous Pro1-Glu2-AngII in plasma or tissues given their identical C-terminal 

sequence. The circulating levels of Pro1- Glu2-AngII were 15% of AngII in humans, but the 

AngII analog increased fivefold in patients with endstage renal disease that may perhaps reflect 

a compensatory response in pathological conditions (56).  

5. Ang-(1–7) Metabolism  

The endogenous levels of Ang-(1–7) are influenced by access to processing enzymes such as the 

carboxypeptidaseACE2or the endopeptidases neprilysin, thimet oligopeptidase, andpro- 

lylendopeptidase (oligopeptidase).The levels of Ang-(1–7)are also dependent on peptidases that 

metabolizethepeptide. Similar to bradykinin and substance P, ACE plays a significant role in the 

hydrolysis of Ang-(1–7) to the penta peptide Ang- (1–5) in the circulation and the proximal 

tubules of the kidney cortex (14),(57). ACE inhibition increased the half-life of Ang-(1–7) six fold 

in the circulation and is necessary to demonstrate the accumulation of Ang-(1–7) from both 

AngI-and AngII- dependent pathways in the renal proximal tubules (57),(57). Thus,the 

mechanism for the increased levels of Ang-(1–7) following ACE inhibitor treatment reflects both 

pro- tection of the peptide from ACE hydrolysis to Ang-(1–5) and shunting of AngI to Ang-(1–

7) through endopeptidase path- ways such as neprilysinorthimet oligopeptidase (15). There is 
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relatively little information on other peptidases that participate in the metabolism of Ang-(1–7) 

other than ACE. We recently detected an endopeptidase activity in the cerebrospinal fluid (CSF) 

of sheep that metabolized Ang-(1–7)at the Tyr4-Ile5 bond to yield Ang-(1–4) and constituted the 

majority of Ang-(1–7) degrading activityin CSF (58),(59). Although the identity of the peptidase 

is currently unknown, the activity was insensitive to inhibitors against neprilysin, 

thimetoligopeptidase, orneurolysin (EC3.4.24.26) (59). The Ang-(1–7)peptidasea ctivity was 

abolished by the mercury-compounds p-chloromercuribenzoate (PCMB) and aminophenyl-

mercuriacetate(APMA), as well as the chelating agents o-phenanthroline and EDTA, but not the 

cysteine epoxide inhibitor E-64 suggesting a metallo peptidase-like activity in CSF (59). The 

regulation of the CSF peptidase is described in the proceeding sectionon fetal programing. 

6. Intracellular Ang-(1–7)-Mas Receptor System  

The RAS was traditionally view edasanendocrine system where by circulating renin catalyzes 

an enzymatic cascade tof orm active peptide products; however, it is apparent that multiple 

tissues contain the necessary components for the local generation of angiotensin 

peptides(60),(61). These tissue systems may release the precursor angiotensinogen, the 

intermediate products AngI and Ang-(1–12), or the active peptides AngII and Ang-(1–7) to bind 

directly to cell surface receptors in an autocrine or paracrine manner.Roberts on and Khairallah 

reported over 40 years ago the localization of AngII binding ites on the chromatin fraction of 

vasculars mooth muscle cells and cardiomyocytes suggesting an intracellular site of action for 

AngII (62). Several laboratories sub- sequently identified AngII receptors using classical 

receptor bind ing techniques on nuclei isolated from liver(63),(64),(65). Eggena and colleagues 

demonstrated that AngII stimulated mRNA transcripts for angiotensinogen, renin, and PDGF 

from isolated liver nuclei suggesting that the nuclear binding sites were functional and capable 

of directly mediating gene expression (66),(67). Moreover,AT1 receptors were also evident on 

nuclei isolated from cortical and medullary areas of ther at kidney (68),(69),(70). AngII-AT1-

receptor stimulation on isolated renal nuclei increased mRNA expression of angiotensinogen, 

the sodium-hydrogen exchanger(NHE3) and the cytokine monocytechemoattractant 

protein(MCP-1)(68). AngII also elicited animmediate increase in calcium by isolated 

corticalnucleiorviamicro injection of the peptide inintact epithelial cells (71). We find that AngII 

directly stimulates reactive oxygen species(ROS) as demonstrated by the enhanced fluores- 

centsig nature of dichlorofluoresce in (DCF);ROSformation was sensitive to the NAD(P) 

Hoxidase inhibitor diphenylene iodonium (DPI) and the AT1 antagonistlosartan(72). Blockade 

of phospho inositol3-kinase (PI3K) and proteinkinase C (PKC) abolished the AngII-AT1-

receptor-dependent stimulation of ROS in renal nuclei.Inlieu of the nuclear localization of the 

NAD (P) Hoxidase iso form NOX4,activation of AT1 receptors may acutely stimulate ROS by a 

PI3K-PKC pathway and subsequent phosphorylation of NOX4(72),(73),(74),(75), The studies 

demonstrating nuclear AT1 receptors with in the kidney and other tissues clearly support an 

emerging view for the localization of various G-protein coupled receptors (GPRCs) to the 

nucleus (76),(77),(78),(79),(80),(81),(82),(83). Inregards to the Ang-(1–7)-Mas receptor system, 

O’Dowd and colleagues not edacanonical nuclear localiza tion sequence on the Masprotein in 
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their studies on AT1-receptor trafficking and localization invascular smooth muscle cells (84). 

We under took a series of studies to establish an intracellular role for Ang-(1–7) in the cortical 

tissue and proximal tubules isolated from the sheep kidney.Immunoblotanalysis of nuclei 

isolated from sheep proximal tubules demonstrated a single immunoreactive band of 35kDa 

utilizing an affinity-purified antibody against the human Masprote in(85). Receptor binding 

studies with the non-selective antagonist 125I-(Sarcosine1, Threonine8)-Ang II (Sarthran) 

revealed significant competition by the AT7/Mas receptor antagonist D-Ala7-Ang-(1–7) in 

nuclei isolated from the renalcortex.Functional assessment of the nuclear AT7 receptor was then 

assessed with the sensitive NO fluorophore DAF in the presence or absence of the NO synthase 

inhibitor L-NAME.Ang- (1–7) dose-dependently increased thefluorescent signature for NO 

which was abolished by priortreatment with L-NAME or the Ang-(1–7) antagonist,but not 

antagonists to the AT1 or AT2 recep- tors. Consistent with the stimulation of NO by Ang-(1–

7),protein expression for endothelial nitricoxide synthase (eNOS) and soluble guanylatecyclase 

(sGC) was evident in the isolated nucleiof sheep proximal tubules(85). These data further 

support previous studies that localized NOS ands GC to liver nuclei, as well as the stimulation 

of NO and cGMP by activation of the bradykininB2 receptor (79),(86). The exact function of the 

Ang-(1–7) axis of the RAS with in the nucleusis not known; however, we hypothesize this 

system may antagonize the intracellular actions of the AngII- AT1-receptor pathway.To address 

this possibility,we assessed the influence of the selective ACE2 inhibitor MLN4760 and the Mas 

receptor antagonist on the activation of ROS by AngIIin renal corticalnuclei.The AngII-AT1-

receptor dependent increase in ROS was significantly augmented to a similar extent by 

treatment of nuclei with either the ACE2 inhibitor or the AT7 receptor antag- onist (87). That 

both MLN4760 and D-Ala7-Ang-(1–7) increased the stimulation of ROS suggests that the 

conversion toAng-(1–7) by ACE2 antagonizes the actions of the AngII-AT1-receptor axis on the 

nucleus. It is possible that that simply blocking the degradation of AngII with the ACE2 

inhibitor may augment the actions of AngII; however, the comparable effects of the AT7 

receptor antago- nist D-Ala7-Ang-(1–7) suggests a distinct role for Ang-(1–7).Since the Ang-(1–

7) antagonistis apeptide and may potentially interact with ACE2,we further demonstrated that 

D-Ala7-Ang-(1–7) does not inhibit nuclear ACE2 activity as assessed by the HPLC- based 

conversion of AngII to Ang-(1–7).Moreover, our studies suggest that the processing of AngII to 

Ang-(1–7) by ACE2 on the nuclear membrane leads to the activation of signaling path- ways 

distinct from that of AngII (87). We donot know,however, whether the attenuation of ROS 

production by Ang-(1–7) involves the stimulation of NO or other signaling pathways. As 

previously discussed, Ang-(1–7)may attenuate the actions of AngII and other growth hormones 

by the activation of intracellular phosphatases such as the dual specificity phosphatasesMKP-

1andSHP-1(41),(42). Several classes of phosphatases including MKP-1 traffic to the nucleus; 

however, it is unknown whether Ang-(1–7)can influence these enzymes to attenuate the actions 

of Ang II(88). Clearly, one issue regarding the intracellular RAS and other peptidergic systems 

is the localization of the components with in the cell. The nucleus is composed of two distinct 

bilayers termed the outer (OMN) and inner (INM) nuclear membranes. Nuclear pore proteins 

traverse both membrane domains and facilitate transport between the cytosol and the nuclear 
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matrix which contains the chromatin-DNA complex. Portions of the ONM are continuous with 

the endoplasmic reticulum (ER) such that perinuclear spaceis shared with the ER.Then uclear 

envelope comprising both OMN and INM invaginates in to the nuclear matrix creating anuclear 

reticulum that is key in the regulated release of nuclear Ca2C (89),(90),(91). Although various 

studies have localized GPRCs primarily to the nuclear envelope and matrix, it is currently 

unclear how the peptide ligands target the nuclear GPRCs, as well as the precise coupling of the 

receptors to their signaling pathways with in the nucleus. Moreover, elucidation of the path- 

ways that deliver peptide ligands to the irrespective intracellular receptors, as well as the 

intracellular regulation under normal and pathological conditions has not been established. As 

to the intra- cellular expression of angiotensins in the kidney, there is evidence for expression 

and up take of angiotensinogen, as well as the uptake of Ang II and Ang-(1–7)by protein 

transporters such as megalin (60),(92),(93),(94),(95). In addition, AT1-receptor mediated 

internalization of Ang II may contribute to the intracellular content of the peptide (60),(78). In 

this regard, intracellular peptidases such as ACE2 may potentially process the internalized 

AngII to Ang-(1–7)as alternative pathway to attenuate AT1-receptor activity and stimulate the 

cellular actions of Ang-(1–7).Utilizing the renal epithelial NRK-52E cell line, we find evidence 

for the nuclear localization of angiotensinogen, left panels) consistent with earlier findings by 

Sherrod and colleagues regarding nuclear angiotensinogen in brain astrocytes and isolated 

nuclei of sheep proximal tubules (85),(96),(97). Interestingly, a second antibody directed to the 

Ang I sequence of angiotensinogen failed to detect the protein in the nucleus of the NRK-52E 

cells suggesting that enzymatic processing of the precursor may occur in this compartment 

(107). In support of an intra-cellular processing pathway, renin expression was also evident in 

the nucleus of the NRK cells, right panels).Isolated nuclei exhibited both renin and prorenin 

activity (following activation by trypsin)that was sensitive to the specific renin inhibitor 

aliskiren, bottom left panel),as well as immune reactive levels of Ang II and Ang-(1–7)(96). In 

addition, peptide metabolism studies in isolated nuclei revealed the direct conversion of Ang I 

to Ang-(1–7) that was essentially abolished by a selective inhibitor (CPP)of the metallo 

endopeptidase thimetoligo peptidase, bottom right panel).Others have reported the nuclear 

expression of thimetoligopeptidase in brain, as well as the identification of anuclear localization 

sequence for the human peptidase (98),(99). TheNRK-52E cells may constitute a relevant cell 

model to establish the pathways that contribute to the intracellular generation and actions of 

Ang II and Ang-(1–7) with inrenal epithelial cells. As analternative concept to intra- cellular 

formation, Ibarra and colleagues  presented evidence for another model of nuclear signaling 

where by the plasma membrane invaginates to the peri-nuclear area that facilitates presentation 

of intracellular signals (IGF receptor coupled to IP3 formation) discretely to the nucleus in 

cardiomyocytes (100). The apparent advantages of this system may reflect a more selective 

activation of the signaling cascade and – eration of the peptide ligands. The latter study adds 

another potential mechanism to the complex pathways of the intracellular receptor system for 

angiotensins and other peptides, as well as emphasizes the need for additional studies to 

elucidate their organization and function. In the endeavor to elucidate the intracellular 

pathways, the importance of robust biochemical and molecular techniques to characterize the 
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RAS cannot be overly emphasized. Several reports have raised concerns regarding the 

specificity of commercial AT1 and AT2 antibodies widely utilized for western immune blot and 

immunocytochemical distribution studies (101),(102),(103). Importantly, these studies find that 

receptor protein and sat the appropriate molecular weights were not abolished in AT1- orAT2- 

deleted cell and tissues amples.We have utilized antibodies to both AT1 and AT2 receptors to 

establish the ir molecular weight in the nuclear fraction as this pertains to the maturation or 

processing  of the receptor protein. However, studies by our laboratory and others also in 

corporate peptide binding assays to quantitate receptor density and affinity, as well as various 

antagonists to identify the receptor subtype. The receptor binding assays also parallel the 

demonstration of functional signaling pathways (ROS,NO) on nuclei and the sensitivity to 

receptor antagonists. Reliance on the assessment of mRNA for the receptor may not equate to 

protein expression and certainly does not reveal the discrete intracellular distribution of the 

receptor. Antibodies to angiotensin receptors or other RAS components are useful and 

convenient tools to characterize this system; however, parallel approaches to establish the 

expression and regulation of the RAS particularly with in the cell are clearly warranted. 

7. Angiotensin II and MAPK 
 
RAS is a very wide and important pathway which coordinate several biological functions like 
regulation of blood pressure, cellular growth, production of extra cellular matrix, stimulation of 
proinflammatory or inflammatory cytokines and initiates apoptosis if necessary (104). This 
pathway is generally activated once renin is available inside circulation. Renin, which is a 
protease enzyme produced from the kidney, converts liver angiotensinogen to angiotensin I. 
Furthermore, angiotensinI is converted to Angiotensin I and Angiotensin II when 
eitherpulmonary ACE or tissue chymase or cathepsin are available via G protein-coupled 
receptor (105). So far, several types of angiotensin (I-XII) have been isolated from various 
models and those are activated through AT1R and AT2R (106). Angiotensin can 
be activated in both circulation and tissue due to the availability of its receptors throughout the 
body (107). It has been also noticed that activation of AT2R often brings some protective effects 
like reduced inflammation via epoxyeicosatrienoic acid and by inhibiting nuclear factor –κβ 
(108). Another study explained that Ang II induce arterial pressure can be reduced by the 
activation of AT2R in rat model (109). A cross study has also been found which explained that 
deletion of AT2R may protect from dietinduced obesity and insulin resistance in rats (110). On 
the other hand it is highly established that Ang II-AT1R binding mostly signals through MAPK 
pathway that promotes cellular growth and inflammation (111). However, MAPK often serves a 
huge number of fundamental cellular processes to exchange extracellular and intracellular 
information (112). Within the endoplasmic reticulum (ER), generally three core types of MAPK 
are found which are MAP3K, MAPKK, and MAPK. Beside this, downstream kinase 
(MAPKAPK) and upstream kinase (MAP4K) are also noticed. Inside the mammalian MAPK 
cascade, four different kinds of MAPK were isolated and named as MAPK p38, ERK5, cJun 
Nterminal kinase (JNK) and extracellular signalregulated kinase 1 and 2 (ERK1/2) respectively 
(113).  
 

8. Ang II and MAPK in hepatic free radicals generation 
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Free radicals are highly reactive molecules which directly damage cell membrane, cytoplasm as 
well as nucleus(114). The prime members of this family are reactive oxygen species and reactive 
nitrogenous species that hamper the normal cellular activity and produces oxidative stress(115). 
However, free radical as well as oxidative stress mediated hepatic dysfunction has been noticed 
enormously by disturbing liver Cytochrome P450 system (116). Oxidative stress markers have 
also been identified inside the serums who were suffering from chronic hepatitis C (117).  
Furthermore, hepatic tissue injuries are very common when free radicals like •OH, •O2-, and 
H2O2 are generated inside liver (118). Although Ang II is mainly responsible for controlling 
blood pressure, it also significantly generates free radical when it is attached with AT1R (119). 
Study also suggested that Ang II-AT1R interaction stimulates NAD(P)H oxidase (NOX) and 
generates ROS and RNS which further stimulates several proinflammatory cytokines 
(120),(121). Mitogen activate protein kinase also participates in generation of free radicals which 
is mostly noticed via NAD(P)H oxidase (NOX)4 and AKT1-AKT2 (protein kinase B) pathway 
(122),(123).  Another study explained that activation of p38MAPK was observed in ATP 
depleted hepatic stellete cells (HSCs) culture. The study also described that p38MAPK 
depended reactive oxygen species (ROS) declined number of normal HSCs (124),(125). One of 
the crucial studies explored that reactive oxygen species contribute significantly in development 
of several cancers by stimulating different cytokines (126).  

 
9. Ang II and MAPK in diabetes  

 
Diabetes, a heterogeneous metabolic disorders which not only affects pancreas but also 
hampers normal functioning of liver(127). Nonalcoholic liver diseases and diabetes are the two 
major components of metabolic syndrome(128). Inside the liver, high glucose concentration may 
alter cellular homeostasis(129), and might induce several pathological events(130). Taken 
together, the complication of diabetes can activate hepatic Ang II(131), which further induces 
MAPK family(132), that possesses several inflammatory cytokines like activated protein-
1,tumor necrosis factor-α, and nuclear factor-κβ, and many others(133). Inflammatory cytokines 
further responsible for the development of liver cirrhosis, cancer and liver failure if not treated 
with care(134). However, chronic diabetic status also triggers collagen and extracellular matrix 
production in liver which further develop hepatic fibrosis(135),(136).  

 

10. Ang II and MAKP in hepatic inflammation 

 
Biological subjects are always exposed to its surrounding environment, at the same time they 
also need food and air to survive. Unfortunately, environment carries several foreign 
harmful elements which often invade inside biological system and activates host 
immunity(137). On the other hand, liver serves various protective roles by producing several 
growth factors, antibody and other immune components to fight against harmful stimuli (138) 
Once those foreign elements invade into hepatic tissue, liver immediately attracts neutrophil, 
Tcell, local macrophages, βintegrin and natural killer cells(139). The evidences for the role of 
Ang II and MAPKs in the development of hepatic inflammation. It is highly suggested that 
Angiotensin II often stimulates immune cells by activating kupffer cell to invite monocytes, 
killer cells, tumor necrosis factor and interleukins(140). Local hepatic renin angiotensin system 
is also regulated by chronic liver injury which simultaneously activates some events such as 
recruitment of inflammatory cells and generation of free radicals(141). Angiotensin related 
hepatic inflammation often showed elevated level of liver marker such as AST, ALP and ALT 
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which confirms hepatic tissue injury(142). Study also explored that MAPK which is activated by 
Ang II solely participates in hepatic inflammation(143). Another study disclosed that MAPK- 
JNKs remarkably serve inflammation(144). A hypothetical mechanism for Ang II and MAPKs 
mediated inflammatory response. also restored the development and cellular proliferation in 
developing liver(145). However, these newly developed molecules showed promising results in 
various in vitro and in vivo assays, their side effects and adverse drug reaction profiles are not 
established fully. A selective inhibitor of p38 mitogenactivated protein kinase, BIRB796, is such 
a molecule which activates thenuclear factor (erythroidderived 2) like 2 signaling pathway(146).  
However, a reactive intermediate of BIRB796 could be found both in mouse and human liver 
microsomes which is responsible for the development of BIRB796's hepatotoxicity(146).  

 
11. New promising molecules against MAPK family  

 
Researchers always try hard to develop a potent molecule against any kind of pathogenesis. 
Various molecules have been tested against angiotensin and related family. There is no such 
potent MAPK inhibitor has been established yet. Some good activities have been showed by few 
molecules but they need proper trial (147),(148), and their effects on various experimental 
animal models. BI78D3, an inhibitor of JNK showed prevention of JNK phosphorylation and 
ameliorates JNK dependent liver damage (149). Another JNK inhibitor SP600125 showed 
promising effect on preventing the JNK expression and its activity in HeLa cells (150). 
Furthermore, animal studies also showed that CNI1493 may prevent p38 MAP kinase signaling 
cascade and reduced TNF-α level in collagen induced arthritis rats (151). Inhibition of p38 MAP 
kinase signalling cascade by SB203580 

 
12. Angiotensin II as a New Potential Therapeutic Target  

 

12.1 Angiotensin II and the Renin-angiotensin System 
 

Angiotensin II (AngII) has been initially identified as the major biologically active peptide of the 
reninangiotensin system (RAS), but it is now well established that other peptides derived from 
the RAS, namely Ang1-7, AngIII and AngIV, also display biological activities(152),(153),(154). 
All angiotensin peptides derive from a unique precursor, angiotensinogen (AGT), synthesized 
and released from the liver. In response to blood changes (such as decrease in blood pressure or 
plasma sodium level), the kidneys produce and release the renin protease which cleaves AGT 
into a decapeptide designated Angiotensin I (AngI). AngI is in turn cleaved by Angiotensin 
Converting Enzyme (ACE) to produce the octapeptide AngII. AngII can then be processed by 
either the Angiotensin Converting Enzyme 2 (ACE2) to produce Ang1-7, or by aminopeptidase 
A and N to produce AngIII and Ang IV, respectively(154). (153). Angiotensin peptides, and in 
particular AngII, are produced in the plasma but also in several organs where a local RAS is 
active(155). Interestingly, angiotensin peptides exert diverse biological effects, such as 
vasoconstriction /vasodilatation, inflammation, proliferation and apoptosis, through binding to 
different receptors, namely AT1R, AT2R, AT4R and MAS-R(154),(156). Both AngII and its 
cleavage product Ang1-7 have been shown to contribute to cancer processes, by different 
mechanisms. Studies reporting an effect of Ang1-7 acting though the MAS receptor have been 
recently reviewed(154), and their role in cancer have first been described by Tallant’s 
group(157),(158),(159). In this chapter, we will mainly focus on the effects of AngII in cancer 
progression. 
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13. Conclusion 

Ang II-induced activation of the AT1R reflects its extraordinarily diverse repertoire of signaling 

mechanisms and pathways, including some that require stringent counter regulatory control 

systems to prevent excessive activity leading to deleterious cellular growth and proliferation. 

This is indicative of the scope and biological significance of angiotensin’s numerous actions, and 

the roles of critical signaling mechanisms that are susceptible to dysfunction leading to 

progressive inflammatory and degenerative conditions that underlie major disease entities. On 

the other hand, the availability of highly effective agents for inhibition of Ang II formation, and 

selective blockade of the AT1R, have led to the identification of many of the hitherto 

unrecognized pathological actions of Ang II 

Ang II induced hepatic inflammation via MAPK suggests several pathways. Firstly, Ang II 

interacts with AT1R, stimulates Gprotein couple receptor (GPCR) and then activates MAPK, 

resulted free radicals generation, later sends stimulation for inflammatory and proinflammatory 

molecules and production of other growth factors which finally contribute hepatic 

inflammation or hepatitis. MAPKs are important signaling molecules in several pathways in 

liver physiology and disease pathogensis. In many pathologic processes, JNK1 is found 

responsible 

over the past two decades have highlighted important effects of the Ang II vasoactive peptide in 

cancer, acting both on tumor cells and the host micro-environment. In this chapter, we 

summarize our recent studies indicating that Ang II facilitates breast cancer metastasis by 

contributing to the cross-talk between cancer cells and the host stroma. While AT1 receptor 

blockade by ARBs is clearly beneficial in animal models, relevance to human cancer still 

remains to be evaluated and further studies should focus on selected populations of tumors 

overexpressing RAS components. 

the recent literature on the non-classical oralternativeACE2-Ang-(1–7)-Mas receptor axis of the 

RAS. The mounting biochemical and functional evidence clearly supports the tenet that this 

pathway may antagonizetheACE-AngII-AT1-receptorarmoftheRASeither directly through 

metabolism of Ang II to Ang-(1–7) by ACE2 or via distinct pathways that limit the activation of 

AngII-AT1- receptor signaling. Indeed, the demonstration of an intracellular ACE2-Ang-(1–7)-

Mas axis that attenuates the AngII-dependent stimulation of ROS on renal nucleiis in keeping 

with the concept of a balanced RAS even with in the cell and   importance of targeting the 

intracellular system as a therapeutic approach to enhance the functional ratio of Ang-(1–7) to 

Ang II. The evidence that an altered Ang-(1–7)system with in the brain and the kidney 

following antenatal glucocorticoid exposure implicates an interaction between the  -(1–7) 
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pathways that contribute or promote the cardiovascular dysfunction associated with fetal 

programing events. 
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